

Comprehensive screening of environmental contaminants by flow-modulated GC×GC

Matthew Edwards, Separation Science Product Manager NEMC, Fri 11th Aug 2017

A company of the SCHAUENBURG International Group

GC×GC modulation

Over 20 years of innovation

1st generation systems

'Fill' mode

 Analytes fill the collection channel (or sample loop)

'Flush' mode

 Analytes injected in same direction they entered the channel (i.e. forward fill/flush)

Performance summary

- Defined collection channel volume
 - Overfilling leads to breakthrough of effluent in to secondary column
- Must flush the channel before it reaches capacity
 - Very short P_M required (i.e. < 2 s)
 - Or very low ¹D column flow rates
- Many flow modulator applications often use skinny ¹D columns (0.100 mm i.d.)
 - Optimum linear velocity can be achieved at lower flow rates
 - Loading issues
 - Variability in column i.d.

Reverse fill/flush dynamics

Reverse fill/flush modulation

Performance summary

- Flexible collection channel volume
 - Offers flexibility in column and flow rate selection
- Overfilling the loop is OK eluate is directed to the bleed line
 - Monitor the bleed line with an additional detector (FID)
 - Activate the valve during specific intervals heart cutting
- Reverse fill/flush improves peak shape
 - Breakthrough eliminated
 - Tailing is greatly reduced

Journal of Chromatography A, 1226 (2012) 116-123

Efficient modulation of volatiles

VOCs from blood

- Modulate volatiles <C₆
- Expand application range for GC×GC

Repeatability

- Replicate injections of diesel (*n*=8/day for 3 days)
- This level of time precision is due to a dedicated EPC for each column

Improved peak shape

²D peak width is a function of loop volume and ²D flow rate

Analysis of water from a contaminated aquifer...

...by SPME-GC×GC-TOF MS

Analysis of water from a contaminated aquifer...

...by SPME-GC×GC-TOF MS

Hexachlorobutadiene would have coeluted with numerous hydrocarbons in 1D GC.

3 information-rich datasets...

- Analysis of diesel by dual detection GC×GC-FID/TOF MS
- Cross-validation and confirmation of peak purity by TOF MS
- Gain another dimension with Tandem Ionisation

Parallel detection FID/TOF MS

Crude oil with 70 eV, 14 eV, FID

Solving the "needle in a haystack" problem...

...using simple scripting expressions

Organochlorines in cannabis...

...using simple scripting expressions

- Scripting expressions generate clean images containing only the peaks that "pass"
- Multiple scripts can be run at once

Compact design

 Simple installation for all popular GC models

Compact design

 Simple installation for all popular GC models

Dual-channel configuration

Total Petroleum Hydrocarbons (TPH)

- Run two samples simultaneously
- Simple stencils for fast group-type quantitation in ChromSpace software

Valve control

Control up to 4 valves in various configurations

A Modulatio	on and Time	d Events Control Soft	ware		
🗋 🗳 🛃	9 X D) 🕰 🛠 🎟 🏢			
Valve 1 GCxGC		Time (m)	Position		
Valve 2	×▼	0.01 🚔	Closed -		
Oven	×▼	80.00	Open 👻		
	×▼	95.00 🚔	Closed -		
	Get	Set			

Flow calculator...

...for simplified method set-up

INSIGHT Flow Calculator							
Column flows and bleed line							
Helium	Carrier Gas						
60	Oven Temp (Deg. C)						
21.05	PCM Pressure (psig)						
2.48	Secondary column length (m)						
0.25	Secondary column diameter (mm)						
2.42	Bleed line length (m)						
0.1026	Bleed line diameter (mm)						
2D Effluent Splitter							
1	X-line to TOF length (m)						
0.18	X-line to TOF diameter (mm)						
0.84	X-line to FID length (m)						
0.32	X-line to FID diameter (mm)						
Loop Fill and Flush							
lues valid for 0.530 mm ID tubing only. Calculations are for He carrier gas							
	LOOP VOLUME						
23	Loop Length (cm)						
0.53	Loop Internal diameter (mm)						
50.74	Volume (µl)						
	FILL						
0.7	¹ D Column volumetric flow rate (ml/min, He)						
5.60	¹ D Column Average linear velocity (cm/sec, He)						
4.349329	Loop fill time by volumetric flow rate (seconds)						
4.107143	Loop fill time by average linear velocity (seconds)						
3.26	75% capacity fill time (by volume)						
3.08	75% capacity fill time (by velocity)						
	FLUSH						
22	⁴ D Column volumetric flow rate (ml/min, He)						
	*D Column Average linear velocity (cm/sec, He)						
173.12							
173.12 138.3878	Loop flush time by volumetric flow rate (milliseconds)						
173.12 138.3878 132.8568	Loop flush time by volumetric flow rate (milliseconds) Loop flush time by average linear velocity (milliseconds)						
173.12 138.3878 132.8568	Loop flush time by volumetric flow rate (milliseconds) Loop flush time by average linear velocity (milliseconds)						
173.12 138.3878 132.8568 208	Loop flush time by volumetric flow rate (milliseconds) Loop flush time by average linear velocity (milliseconds) Loop flushed 1.5 times in milliseconds (by volume)						

Summary

Reverse fill/flush flow modulation provides:

- Improved peak shape and peak capacity
- Efficient modulation of both volatiles and semi-volatiles (CH₄ to n-C₆₀)
- Excellent repeatability for large sample batches
 - Rigid retention times
 - Area %RSD routinely <5%
- Simple configuration of:
 - Parallel detection (e.g. FID/TOF MS)
 - Heart-cutting
 - Backflushing
 - Dual injection

Contact SepSolve

- Email: hello@sepsolve.com
- Tel.: +44 (0)1773 669222
- Web: www.sepsolve.com
- Twitter: @SepSolve
- LinkedIn: www.linkedin.com/company/sepsolve-analytical

